则.设g(t)= 查看更多

 

题目列表(包括答案和解析)

设g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(
2
2
);
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],则f1(x)=-1,x∈[-
π
2
π
2
],f2(x)=sinx,x∈[-
π
2
π
2
],设φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

设g(x)=2x+数学公式,x∈[数学公式,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(数学公式);
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-数学公式数学公式],则f1(x)=-1,x∈[-数学公式数学公式],f2(x)=sinx,x∈[-数学公式数学公式],设φ(x)=数学公式+数学公式,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

设g(x)=2x+,x∈[,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g();
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-],则f1(x)=-1,x∈[-],f2(x)=sinx,x∈[-],设φ(x)=+,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

设函数f(x)定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D使f(x)在[a,b]上的值域为[a,b],那么就称y=f(x)为“成功函数”.若函数g(x)=loga(a2x+t)(a>0,a≠1)是定义域为R的“成功函数”,则t的取值范围为(  )
A、(0,+∞)
B、(-∞,0)
C、[0,
1
4
]
D、(0,
1
4
)

查看答案和解析>>

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是(  )
A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3

查看答案和解析>>


同步练习册答案