(2)设.求数列{bn}的前n项和. 查看更多

 

题目列表(包括答案和解析)

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:Tn
72

查看答案和解析>>

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn(n=1,2,3…),Tn为数列{cn}的前n项和.求Tn

查看答案和解析>>

设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an}为等差数列,且a5=9,a7=13.
(1)求证:数列{bn}是等比数列,并求{bn}通项公式;
(2)若cn=bnan(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

设数列{bn}的前n项和为Sn,对任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3;数列{an}满足a1=1,an+1=(1+cos2
bnπ
2
)an+sin2
bnπ
2
,n∈N*
(Ⅰ)求b1,b2的值及数列{bn}的通项公式;
(Ⅱ)求证:
a2
a1
+
a4
a3
+
a6
a5
…+
a2n
a2n-1
<n+
19
12
对一切n∈N+成立.

查看答案和解析>>

设数列{bn}的前n项和为Sn,且bn=2﹣2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an·bn(n=1,2,3…),Tn为数列{cn}的前n项和.求Tn

查看答案和解析>>


同步练习册答案