即对任意R成立. 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)

查看答案和解析>>

规定记号“?”表示一种运算,即a?b=ab+a+b2(a,b∈R),若k?x>0对任意实数x都成立,则实数k的取值范围是
(0,4)
(0,4)

查看答案和解析>>

规定记号“?”表示一种运算,即a?b=ab+a+b2(a,b∈R),若k?x>0对任意实数x都成立,则实数k的取值范围是   

查看答案和解析>>

规定记号“?”表示一种运算,即a?b=ab+a+b2(a,b∈R),若k?x>0对任意实数x都成立,则实数k的取值范围是________.

查看答案和解析>>


同步练习册答案