题目列表(包括答案和解析)
(本小题满分12分)
已知函数
;
(1)求
; (2)求
的最大值与最小值.
【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。
第二问中,利用第一问的导数,令导数为零,得到![]()
然后结合导数,函数的关系判定函数的单调性,求解最值即可。
| 4 | 3 |
已知函数f(x)=-x3+3x2+9x+a.
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
思路 本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.
记函数
的导数为
,
的导数为
的导数为
。若
可进行
次求导,则
均可近似表示为:
![]()
若取
,根据这个结论,则可近似估计自然对数的底数
_____(用分数表示).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com