题目列表(包括答案和解析)
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
在四棱锥
中,
平面
,底面
为矩形,
.
(Ⅰ)当
时,求证:
;
(Ⅱ)若
边上有且只有一个点
,使得
,求此时二面角
的余弦值.
![]()
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,![]()
![]()
又因为
,
………………2分
又
,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得![]()
由此知道a=2, 设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
解:(Ⅰ)当
时,底面ABCD为正方形,![]()
![]()
又因为
,
又![]()
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
![]()
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2,
设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
命题“若
,![]()
,![]()
,则![]()
.”可以如下证明:构造函数
,则
,因为对一切
,恒有
,所以
,故得![]()
.
试解决下列问题:
(1)若
,
,![]()
,![]()
,求证![]()
;
(2)试将上述命题推广到n个实数,并证明你的结论.
((本小题共13分)
若数列
满足
,数列
为
数列,记
=
.
(Ⅰ)写出一个满足
,且
〉0的
数列
;
(Ⅱ)若
,n=2000,证明:E数列
是递增数列的充要条件是
=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列
,使得
=0?如果存在,写出一个满足条件的E数列
;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以
.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故
是递增数列.综上,结论得证。
如图,在直三棱柱
中,底面
为等腰直角三角形,
,
为棱
上一点,且平面
平面
.
(Ⅰ)求证:
点为棱
的中点;
(Ⅱ)判断四棱锥
和
的体积是否相等,并证明。
![]()
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知
,
面
。由此知:
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点
作
于
点,取
的中点
,连
。
面
面
且相交于
,面
内的直线
,
面
。……3分
又
面
面
且相交于
,且
为等腰三角形,易知
,
面
。由此知:
,从而有
共面,又易知
面
,故有
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
…6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com