20.如图.在四棱锥P―ABCD中.底面ABCD为正方形.PD平面ABCD.且PD=AB=2.E是PB的中点.F是AD的中点. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM,

   (1)求证:M为PC的中点;

   (2)求证:面ADM⊥面PBC。

查看答案和解析>>

(本小题满分12分)

如图,在四棱锥中,底面四边长为1的

 菱形,

的中点.

(Ⅰ)求异面直线AB与MD所成角的大小

(Ⅱ)求点B到平面OCD的距离.

查看答案和解析>>

(本小题满分12分)如图,在四棱锥V—ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点。(I)求证:平面EFG//平面VCD;   (II)当二面角V—BC—A、V—DC—A分别为45°、30°时,求直线VB与平面EFG所成的角。

查看答案和解析>>

(本小题满分12分)

        如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—

CD—A的平面角为,M为AB中点,N为SC中点.

   (1)证明:MN//平面SAD;

   (2)证明:平面SMC⊥平面SCD;

 
   (3)若,求实数的值,使得直线SM与平面SCD所成角为

查看答案和解析>>

(本小题满分12分)如图,在四棱锥中,底面是正方形,侧面是正三角形,平面底面.证明:平面

  

查看答案和解析>>

 

一:选择题:BCAAD   CCCBA  CC

 

二:填空题:

20090109

三:解答题

17.解:(1)由已知

   ∴ 

   ∵  

∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

    又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

所以                                                                                    

(2)在△ABC中,   

            

        

     而   

如果

    

                                                                   

                                  

18.解:(1)点A不在两条高线上,

 不妨设AC边上的高:,AB边上的高:

所以AC,AB的方程为:

,即

由此可得直线BC的方程为:

(2)

由到角公式得:

同理可算

19.解:(1)令

   则,因

故函数上是增函数,

时,,即

   (2)令

    则

    所以在(,―1)递减,(―1,0)递增,

(0,1)递减,(1,)递增。

处取得极小值,且

故存在,使原方程有4个不同实根。

20.解(1)连结FO,F是AD的中点,

*  OFAD,

EO平面ABCD

由三垂线定理,得EFAD,

AD//BC,

EFBC                          

连结FB,可求得FB=PF=,则EFPB,

PBBC=B,

 EF平面PBC。 

(2)连结BD,PD平面ABCD,过点E作EOBD于O,

连结AO,则EO//PD

且EO平面ABCD,所以AEO为异面直线PD、AE所成的角              

E是PB的中点,则O是BD的中点,且EO=PD=1

在Rt△EOA中,AO=

   所以:异面直线PD与AE所成的角的大小为

(3)取PC的中点G,连结EG,FG,则EG是FG在平面PBC内的射影

* PD平面ABCD,

* PDBC,又DCBC,且PDDC=D,

BC平面PDC

* BCPC,

EG//BC,则EGPC,

FGPC

所以FGE是二面角F―PC―B的平面角                                   

在Rt△FEG中,EG=BC=1,GF=

所以二面角F―PC―B的大小为   

21.解(1), 

   ,令

所以递增

,可得实数的取值范围为

(2)当时,

   所以:

即为 

可化为

由题意:存在时,

恒成立

只要

 

所以:

,知

22.证明:(1)由已知得

  

(2)由(1)得

=