10.已知定点是椭圆的两个焦点,若直线与椭圆有公共点.则当椭圆的长轴最短时其短轴的长为 A.3 B.4 C.6 D.8 查看更多

 

题目列表(包括答案和解析)

已知定点是椭圆的两个焦点,若直线与椭圆有公共点,则当椭圆的长轴最短时

其短轴的长为      

A.3                     B.4                     C.6                     D.8

查看答案和解析>>

已知点F是椭圆的右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足.若点P满足

(1)求点P的轨迹C的方程;

(2)设过点F任作一直线与点P的轨迹交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

已知点F是椭圆的右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足.若点P满足

(Ⅰ)求点P的轨迹C的方程;

(Ⅱ)设过点F任作一直线与点P的轨迹交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

精英家教网定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

一.选择题

题号

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(万元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)设掷出的两枚骰子的点数同是为事件

     同掷出1的概率,同掷出2的概率,同掷出3的概率

所以,掷出的两枚骰子的点数相同的概率为P=  (8分)

(Ⅲ)

时)

 

  2

  3

  4

  5 

  6

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

时)

 

  2

  3

  4

  5 

  6

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

时)

 

  2

  3

  4

  5 

  6

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

时, 最大为                             (12分)

19.(Ⅰ)

   

    两两相互垂直, 连结并延长交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中点

  

  

   梯形的高

        ---     (12分)

       【注】可以用空间向量的方法

20.设2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差为d,则2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2)

 

       --------------------              (8分)

 

21.(Ⅰ)∵直线的斜率为1,抛物线的焦点 

    ∴直线的方程为

   由

  设

  则

  又

       

  故 夹角的余弦值为    -----------------   (6分)

(Ⅱ)由

  即得:

  由 

从而得直线的方程为

 ∴轴上截距为

  ∵的减函数

∴  从而得

轴上截距的范围是  ------------ (12分)

22.(Ⅰ) 

    在直线上,

                ??????????????      (4分)

(Ⅱ)

 上是增函数,上恒成立

 所以得         ???????????????  (8分)

(Ⅲ)的定义域是

①当时,上单增,且无解;

 ②当时,上是增函数,且

有唯一解;

③当时,

那么在单减,在单增,

    时,无解;

     时,有唯一解 

     时,

     那么在上,有唯一解

而在上,设

  

即得在上,有唯一解.

综合①②③得:时,有唯一解;

        时,无解;

       时,有且只有二解.

 

               ??????????????     (14分)

 


同步练习册答案