(I)试用表示, 查看更多

 

题目列表(包括答案和解析)

(1)设a>0,解关于y的不等式y2-2(
a
+
1
a
)y+1≤0

(2)对于任意给定的a≥2,由(1)所确定的y解集(用区间表示)记为I(a),我们规定:区间[m,n]的长度为n-m.如果I(a)的长度为r(a),试求当a取什么值时,r(a)取得最小值,并求r(a)的最小值及此时的I(a).

查看答案和解析>>

 

已知函数

   (I)试用含的代数式表示

   (Ⅱ)求的单调区间;                 

   (Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点.

 

 

 

 

 

 

查看答案和解析>>

(2009•大连二模)(I)已知函数f(x)=x-
1
x
,x∈(
1
4
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
图象上的任意两点,且x1<x2
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).

查看答案和解析>>

设直线与椭圆相切。 (I)试将表示出来;  (Ⅱ)若经过动点可以向椭圆引两条互相垂直的切线,为坐标原点,求证:为定值。

查看答案和解析>>

(本小题满分12分)

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解,训练对提髙‘数学应用题得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

60分以下

61—70 分

71—80 分

81-90 分

91-100分

甲班(人数)

3

6

11

18

12

乙班(人数)

8

13

15

10

现规定平均成绩在80分以上(不含80分)的为优秀.
(I )试分别估计两个班级的优秀率;

(II)由以上统计数据填写下面2 X 2列联表,并问是否有"5匁的把握认为“加强‘语文阅读理解’训练对提商‘数学应用题’得分率”有帮助.

优秀人数

非优秀人数

合计

甲班

乙班

合计

参考公式及数据:

0.50

0.40

0.25

0.15

0.10

0. 05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.82

查看答案和解析>>

一、选择题:每小题5分,共60分.

       BABDB   DCABD  BD

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷相应题号的横线上.

13.某校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有老师中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n的值为:16

14.若△ABC三个内角A、B、C的对边分别是a、b、c,且acosB+bcosA=csinC,则角C的大小为:

15.若满足约束条件的最大值为:2

16.若,且,则实数x的取值范围是:

三、解答题:本大题共6小题,共70分.把答案填在答题卷相应题号的答题区中.

17.(本小题满分10分)

如图,已知,且

(I)试用表示

(Ⅱ)设向量的夹角为,求的值.

解:(I)设,则

      ;            …………3分

       所以         解得:                                                  

       即 .                                                                                  …………5分

(Ⅱ)由(I)知 ,又

所以 ) ()=,                                     

                            …………8分

.                                                      …………10分

18.(本小题满分10分)

甲、乙等五名奥运志愿者被随机地分配到四个不同的岗位服务,每个岗位至少有一名志愿者.

(Ⅰ)求甲、乙两人同时被分配到岗位服务的概率;

(Ⅱ)求甲、乙两人被分配到不同岗位服务的概率.

解:(Ⅰ)记甲、乙两人同时被分到岗位服务为事件

那么

即甲、乙两人同时被分到岗位服务的概率是.                                       …………5分

(Ⅱ)设甲、乙两人同时被分到同一岗位服务为事件

那么

故甲、乙两人被分到不同岗位服务的概率是.         …………10分

19.(本小题满分12分)

如图,四面体ABCD中,OBD的中点,AB=AD=CA=CB=CD=BD=2.

(Ⅰ)求证:AO⊥平面BCD

(Ⅱ)求异面直线ABCD所成角的大小.

 

解:(方法一)

(Ⅰ)连结OC.∵BO=DO,AB=AD, BC=CD,

∴AO⊥BD,CO⊥BD.                                       …………3分

在△AOC中,由已知得AC=2,AO=1,CO=

∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.

 ∴AO平面BCD.           …………6分

(Ⅱ)分别取AC、BC的中点M、E,连结OM、ME、OE,则

                  MEABOEDC.    

(或其补角)等于异面直线ABCD所成的角.                   …………9分

在△OME中,                                  

是直角△AOC斜边AC上的中线,∴

∴异面直线ABCD所成角的大小为                                                …………12分

(方法二)

(Ⅰ)同方法一.                                                …………6分

(Ⅱ)由(Ⅰ)知:AO⊥OC,AO⊥BD,CO⊥BD.

O为原点,建立空间直角坐标系如图,  …………7分

A(0,0,1),B(1,0,0),C(0,,0),D(-1,0,0) .     …………10分

所以

∴异面直线ABCD所成角的大小为                                         …………12分

20.(本小题满分12分)

数列满足,且

   (I)求,并证明数列是等比数列;

   (II)求

解:(I)

           ;                       …………2分

  又,,                    …………4分

    且  

    所以数列是以-2为首项,3为公比的等比数列.                   …………6分

   (II)由(I)得,    .                  …………8分

   

                               …………10分

                                    …………12分

21.(本小题满分13分)

已知函数,在任意一点处的切线的斜率为.

(I)求函数的单调区间;

(II)若上的最小值为,求在R上的极大值.

21. 解:(I)因,所以;  …………2分

 ,

 ,   .                  …………4分

上是增函数,

在(-1,2)上为减函数.               …………8分

(II)由(I)知在(-3,-1)上是增函数,在(-1,2)上为减函数,

所以 上的最小值是,极大值为.       …………10分

,

上的最小值是,∴,.   …………12分

即所求函数在R上的极大值为                                 …………13分

22.(本小题满分13分)

如图,倾斜角为的直线经过抛物线的焦点F,且与抛物线交于AB两点.

(I)求抛物线的焦点F的坐标及准线l的方程;

(II)若为锐角,作线段AB的垂直平分线mx轴于点P,证明为定值,并求此定值.

解:(I)设抛物线的标准方程为,则,从而

因此抛物线焦点F的坐标为(2,0),准线方程为.                      ……………4分

(II)作AClBDl,垂足分别为CD

则由抛物线的定义知:|FA|=|AC|,|FB|=|BD|.

AB的横坐标分别为xAxB,则

|FA|=|AC|=

解得;                                          ……………7分

|FB|=|BD|=

解得.                                                                           ……………9分

记直线mAB的交点为E,则

所以.                                                                  ……………12分

.                 ……………13分

 

 

 

 


同步练习册答案