题目列表(包括答案和解析)
已知
均为实数,且
,
求证:
中至少有一个大于
。
【解析】利用反证法的思想进行证明即可。首先否定结论假设a,b,c都不大于0然后在假设的前提下,即
,得
,而
,即
,与
矛盾从而得到矛盾,假设不成立。
△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c
【解析】解:因为
![]()
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r=
=
,
故所求圆的方程为:
+
=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圆的方程为:
+
=2
………………………12分
法二:由条件设所求圆的方程为:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圆的方程为:
+
=2
………………………12分
其它方法相应给分
已知
,
求
和
的值.
【解析】利用三角恒等变换得到函数值,
由于
得
![]()
解析: 由
得
![]()
求
的值.
【解析】利用对数函数的运算性质可知,![]()
=![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com