评述:本题从所给的条件出发.通过观察.分析.归纳.猜想出结论.然后对所猜想的结论加以证明.这个探索结论的过程可以概括为:归纳------猜想------证明 查看更多

 

题目列表(包括答案和解析)

下列四个命题中
①设有一个回归方程y=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“?x0∈R,x02-x0-1>0“的否定¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-l<X<0)=
1
2
-p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有(  )
附:本题可以参考独立性检验临界值表
 P(K2≥k)  0.5 0.40  0.25  0.15  0.10  0.05  0.025  0.010  0.005  0.001 
 k 0.455  0.708  1.323  2.072  2.706  3.841  5.024  6.535  7.879  10.
828 
A、1个B、2个C、3个D、4个

查看答案和解析>>

4、命题“在△ABC中,若∠C是直角,则∠B一定是锐角.”的证明过程如下:
假设∠B不是锐角,则∠B是直角或钝角,即∠B≥90°,
所以∠A+∠B+∠C≥∠A+90°+90°>180°,
这与三角形的内角和等于180°矛盾
所以上述假设不成立,所以∠B一定是锐角.
本题采用的证明方法是(  )

查看答案和解析>>

下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
y
=3-5x
,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程
y
=
b
x+
a
必过(
.
x
 ,
.
y
);
④在一个2×2列联中,由计算得K2=13.079则有99%的把握确认这两个变量间有关系;
其中错误 的个数是(  )
本题可以参考独立性检验临界值表:
P(K2≥k) 0.5 0.40 0.25 0.15 0.10 0.05 0.25 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.535 7.879 10.828
A、0B、1C、2D、3

查看答案和解析>>

已知函数f(x)=-x3+3x2+9xa.

(1)求f(x)的单调递减区间;

(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

思路 本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.

查看答案和解析>>

.(本题满分12分)如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.

   (1)求证:AB1// 面BDC1

  (2)求二面角C1—BD—C的余弦值;

   (3)在侧棱AA­1上是否存在点P,使得

CP⊥面BDC1?并证明你的结论.

 

 

 

 

查看答案和解析>>


同步练习册答案