o C B A S t o S t s t o s t o - 2 2 p - 2 2 p - 2 2 p - 2 2 p 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
3
2
),椭圆C左右焦点分别为F1,F2,上顶点为E,△EF1F2为等边三角形.定义椭圆C上的点M(x0,y0)的“伴随点”为N(
x0
a
y0
b
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆C1的方程为(x+2a)2+y2=a2,圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于S,T两点.当点P变化时,以ST为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(Ⅲ)直线l交椭圆C于H、J两点,若点H、J的“伴随点”分别是L、Q,且以LQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究△OHJ的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为
1
2
,它的一个顶点恰好是抛物线x2=4
3
y
的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求
OS
OT
的取值范围.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求的取值范围.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线y=x2的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求的取值范围.

查看答案和解析>>

精英家教网已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为
π
3
的直线n,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)若P为抛物线C上的动点,求
PM
PF
的最小值;
(Ⅲ)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>


同步练习册答案