(II)满足如下条件: 查看更多

 

题目列表(包括答案和解析)

数列由下列条件所确定:

(i)

(ii)满足如下条件:

        ,n≥2;

 
那么,当时,的通项公式

时,用表示的通项=        k=2,3,……,n

查看答案和解析>>

给定有限个正数满足条件:每个数都不大于50且总和=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:

    首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差与所有可能的其他选择相比是最小的,称为第一组余差;

    然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为;如此继续构成第三组(余差为)、第四组(余差为)、……,直至第组(余差为)把这些数全部分完为止.

   (I)判断的大小关系,并指出除第N组外的每组至少含有几个数

   (II)当构成第组后,指出余下的每个数与的大小关系,并证明;

   (III)对任何满足条件T的有限个正数,证明:.

查看答案和解析>>

给出下列5个命题:
①0<a≤是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U>1+a>
⑤函数f(x)=(x≠kπ+),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是   

查看答案和解析>>

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:
(1)对任意正数x、y,都有f(xy)=f(x)+f(y);
(2)当x>1时,f(x)<0;
(3)f(3)=-1,
(I)求f(1)、数学公式的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.
(III)如果存在正数k,使不等式f(kx)+f(2-x)<2有解,求正数k的取值范围.

查看答案和解析>>


同步练习册答案