()由此可得 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)求证:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求证:
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.
对于cos3x,我们有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可见cos3x可以表示为cosx的三次多项式.
一般地,存在一个n次多项式Pn(t),使得cosnx=Pn(cosx),这些多项式Pn(t)称为切比雪夫(P.L.Tschebyscheff)多项式.
(1)请尝试求出P4(t),即用一个cosx的四次多项式来表示cos4x.
(2)化简cos(60°-θ)cos(60°+θ)cosθ,并利用此结果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

(2012•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=
-
16
x+2
-x+8    0≤x≤2
4-x                  2<x≤4
.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>


同步练习册答案