题目列表(包括答案和解析)
已知
,设命题
:不等式
解集为R;命题
:方程![]()
没有实根,如果命题p或q为真命题,p且q为假命题,求
的取值范围.
【解析】本题先求出p、q为真时的c的取值范围;然后再对p、q一真一假两种情况进行讨论求解,最后求并集即可.
已知二次函数
的二次项系数为
,且不等式
的解集为
,
(1)若方程
有两个相等的根,求
的解析式;
(2)若
的最大值为正数,求
的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程![]()
②
∵方程②有两个相等的根,
∴
,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:![]()
(2)由![]()
![]()
![]()
由
解得:
![]()
故当f(x)的最大值为正数时,实数a的取值范围是![]()
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
已知函数![]()
;
(1)若函数
在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数
,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数
,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1)
,
因为
在其定义域内的单调递增函数,
所以
内满足
恒成立,即
恒成立,
亦即
,
即可 又![]()
当且仅当
,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,设![]()
上的增函数,
依题意需![]()
实数k的取值范围是![]()
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com