题目列表(包括答案和解析)
若
的展开式中第3项与第7项的二项式系数相等,则该展开式中
的系数为_________.
【解析】因为展开式中的第3项和第7项的二项式系数相同,即
,所以
,所以展开式的通项为
,令
,解得
,所以
,所以
的系数为
.
设数列
的各项均为正数.若对任意的
,存在
,使得
成立,则称数列
为“Jk型”数列.
(1)若数列
是“J2型”数列,且
,
,求
;
(2)若数列
既是“J3型”数列,又是“J4型”数列,证明:数列
是等比数列.
【解析】1)中由题意,得
,
,
,
,…成等比数列,且公比
,
所以.![]()
(2)中证明:由{
}是“j4型”数列,得
,…成等比数列,设公比为t. 由{
}是“j3型”数列,得
,…成等比数列,设公比为
;
,…成等比数列,设公比为
;
…成等比数列,设公比为
;
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
设函数f(x)=
在[1,+∞
上为增函数.
(1)求正实数a的取值范围;
(2)比较
的大小,说明理由;
(3)求证:
(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:
,依题意得:
≥0对x∈[1,+∞
恒成立
∴ax-1≥0对x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上为增函数,
∴n≥2时:f(
)=
(3) ∵
∴![]()
已知
是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若
,是否存在
,有
?请说明理由;
(Ⅱ)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
【解析】第一问中,由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)中当
时,则![]()
即
,其中
是大于等于
的整数
反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)中设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
结合二项式定理得到结论。
解(1)由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)当
时,则![]()
即
,其中
是大于等于
的整数反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
![]()
由
,得
![]()
当
为奇数时,此时,一定有
和
使上式一定成立。
当
为奇数时,命题都成立
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com