∵0<α<π,∴等号成立当且仅当cosα-=0 即α=600[评析]这些该题本身不难.但三角证明题出现证法太多.标准不易统一.给阅卷带来非常大的难度.另一方面.这一答案给出的分析法证明格式也不对.一般分析法证明题格式“要证A.只要证B 形式.B是A的充分不必要条件即可.而不是由A导出B. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事实上:对于?x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+
1x
)x
<e,(x>0).

查看答案和解析>>

若对任意x∈A,y∈B,(A、B⊆R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是

查看答案和解析>>

若对任意x∈A,y∈B,(A、B?R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是(  )
A、①B、②C、③D、④

查看答案和解析>>

请先阅读:
设平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夹角为θ,
因为
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)试求函数y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

abc∈R,证明:a2+ac+c2+3b(a+b+c)≥0,并指出等号成立的   条件.

查看答案和解析>>


同步练习册答案