题目列表(包括答案和解析)
已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项
,
…的最小值记为Bn,dn=An-Bn.
(I)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,
),写出d1,d2,d3,d4的值;
(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;
(III)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1.
△ABC中,内角A、B、C成等差数列,其对边a、b、c满足
,求A。
【解析】本试题主要考查了解三角形的运用,
因为
![]()
【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题。试题整体上比较稳定,思路也比较容易想,先将利用等差数列得到角B,然后利用余弦定理求解运算得到A。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com