(I)当a=0时.若x<0.则<0.若x>0,则>0.所以当a=0时.函数f(x)在区间内为减函数.在区间内为增函数. 查看更多

 

题目列表(包括答案和解析)

(2011•潍坊二模)设函数f(x)=lnx+
a
x
(a∈R),g(x)=x,F(x)=f(1+ex)-g(x)(x∈R)

(I)若函数f(x)的图象上任意一点P(x0,y0)处切线的斜率k≤
1
2
,求实数a的取值范围;
(Ⅱ)当a=0时,若x1,x2∈R,且x1≠x2,证明:F(
x1+x2
2
)<
F(x1)+F(x2)
2

(Ⅲ)当a=0时,若方程m[f(x)+g(x)]=
1
2
x2
(m>0)有唯一解,求m的值.

查看答案和解析>>

已知函数f(x)=lnx-ax2-bx.
(I)当a=-1时,若函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)若f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为C(x0,0),求证:f′(x0)<0.

查看答案和解析>>

设函数f(x)=
(x-a)2x
,其中a∈R.
(I)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅱ)当a>4时,是否存在k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)对任意x∈R恒成立?若存在,求出k的范围;若不存在,请说明理由.

查看答案和解析>>

(2012•东城区模拟)已知函数f(x)=2ax3-3ax2+1,g(x)=-
a
4
x+
3
2
(a∈R).
(Ⅰ) 当a=1时,求函数y=f(x)的单调区间;
(Ⅱ) 当a≤0时,若任意给定的x0∈[0,2],在[0.2]上总存在两个不同的xi(i=1,2),使 得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

已知函数g(x)=-
a2
3
x3+
a
2
x2+cx(a≠0)

(I)当a=1时,若函数g(x)在区间(-1,1)上是增函数,求实数c的取值范围;
(II)当a≥
1
2
时,(1)求证:对任意的x∈[0,1],g′(x)≤1的充要条件是c≤
3
4

(2)若关于x的实系数方程g′(x)=0有两个实根α,β,求证:|α|≤1,且|β|≤1的充要条件是-
1
4
≤c≤a2-a

查看答案和解析>>


同步练习册答案