因此BD与平面ADMN所成的角为.[评析]该题是一个老题.1994年上海高考出过.2001年全国高考也出过.再次出现不太妥当. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

(2011•丰台区二模)已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求证:C'D⊥平面ABD;
(Ⅱ)求直线BD与平面BEC'所成角的正弦值;
(Ⅲ)求二面角D-BE-C'的余弦值.
本题重点考查的是翻折问题.在翻折的过程中,哪些是不变的,哪些是改变的学生必须非常清楚.

查看答案和解析>>

已知棱长为1的正方体ABCD-A1B1C1D1,直线BD与平面A1BC1所成角的余弦值为
 

查看答案和解析>>

(2013•成都二模)如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC-A1B1C1中,AC=AA1=2AB=2,∠BAC=90°,点D是侧棱CC1 延长线上一点,EF是平面ABD与平面A1B1C1的交线.
(I)求证:EF丄A1C;
(II)当直线BD与平面ABC所成角的正弦值为
3
14
14
时,求三棱锥D-EFC1的体积.

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求BD与平面ADMN所成的角.

查看答案和解析>>


同步练习册答案