若椭圆的一条准线的方程是x=5.则k 的值是------------ 查看更多

 

题目列表(包括答案和解析)

定义,若函数,则将的图象向右平移个单位所得曲线的一条对称轴的方程是

A.B.C.D.

查看答案和解析>>

精英家教网如图,椭圆的中心为原点O,离心率e=
2
2
,一条准线的方程为x=2
2

(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足
OP
=
OM
+2
ON
,其中M,N是椭圆上的点.直线OM与ON的斜率之积为-
1
2

问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是
2
3
a
,P到一条准线的距离是
8
3
a
,则此椭圆的离心率为
1
4

(2)若椭圆
x2
a2
+
y2
b2
=1
(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是
(2)(4)
(2)(4)
.(把你认为正确的命题序号都填上)

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
5
,若将这个椭圆绕着它的右焦点按逆时针方向旋转
π
2
后,所得新椭圆的一条准线方程是y=
16
3
,则原来的椭圆方程是
 

新椭圆方程是
 

查看答案和解析>>


同步练习册答案