题目列表(包括答案和解析)
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考点: | 数列的求和;等差数列的性质. |
| 专题: | 等差数列与等比数列. |
| 分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
| 点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
设
为等比数列,
为等差数列,且
,
,若数列
是1,1,2,…,则数列
的前10项之和为( )
A.978 B.557 C.476 D.以上答案都不对
设{an}是公差不为0,且各项均为正数的等差数列,则
a1·a8>a4·a5
a1·a8<a4·a5
a1·a8=a4·a5
D.以上答案均可能
、设{an}是公差不为0,且各项均为正数的等差数列,则( )
A、a1·a8>a4·a5 B、a1·a8<a4·a5
C、a1·a8=a4·a5 D、以上答案均可能
设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的n
N*,均有S n>0
D.若对任意的n
N*,均有S n>0,则数列{S n}是递增数列
【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.
【答案】C
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com