(文)当时.求. 查看更多

 

题目列表(包括答案和解析)

(文)已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=ax(a>0,a≠1)的图象上,其中{an}是以1为首项,2为公差的等差数列.
(1)求数列{an}的通项公式,并证明数列{bn}是等比数列;
(2)设数列{bn}的前n项的和Sn,求
lim
n→∞
Sn
Sn+1

(3)设Qn(an,0),当a=
2
3
时,问△OPnQn的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

(文)某企业自2009年1月1日正式投产,环保监测部门从该企业投产之日起对它向某湖区排放污水进行了四个月的跟踪监测,检测的数据如下表.并预测,如果不加以治理,该企业每月向湖区排放污水的量将成等比数列.
月份 1月 2月 3月 4月
该企业向湖区排放的污水(单位:立方米) 1万 2万 4万 8万
(1)如果不加以治理,求从2009年1月起,m个月后,该企业总计向某湖区排放了多少立方米的污水?
(2)为保护环境,当地政府和企业决定从7月份开始投资安装污水处理设备,预计7月份的污水排放量比6月份减少4万立方米,以后每月的污水排放量均比上月减少4万立方米,当企业停止排放污水后,再以每月16万立方米的速度处理湖区中的污水,请问什么时候可以使湖区中的污水不多于50万立方米?

查看答案和解析>>

(文)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(1)求实数b的值;
(2)求函数f(x)的单调区间;
(3)当a=1时,求函数y=f(x)(x∈[
1e
,e])
的值域.

查看答案和解析>>

(文)如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,点 E在线段PC上,设
PEEC
,PA=AB.
(I) 证明:BD⊥PC;
(Ⅱ)当λ=1时,平面BDE分此棱锥为两部分,求这两部分的体积比.

查看答案和解析>>

(文)定义在R上函数f(x)对任意实数x、y∈R都有f(x+y)=f(x)•f(y),且当x<0时,f(x)>1.
(1)证明当x>0时,0<f(x)<1;
(2)判断函数f(x)的单调性并证明;
(3)如果对任意实数x、y有f(x2)•f(y2)≤f(axy)恒成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案