⑴ 证明:由题设.得 查看更多

 

题目列表(包括答案和解析)

设点是抛物线的焦点,是抛物线上的个不同的点().
(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若
求证:
(3) 当时,某同学对(2)的逆命题,即:
“若,则.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>


同步练习册答案