题目列表(包括答案和解析)
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范围是![]()
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r=
=
,
故所求圆的方程为:
+
=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圆的方程为:
+
=2
………………………12分
法二:由条件设所求圆的方程为:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圆的方程为:
+
=2
………………………12分
其它方法相应给分
已知函数f(x)(x∈R)满足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}为等比数列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)证明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=
.
⑴ 若cosA=-
,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面积.
【解析】第一问中sinB=
=
, sinA=
=![]()
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=
×
-(-
)×
=![]()
第二问中,由
=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3综合得△ABC的面积为
或![]()
解:⑴ sinB=
=
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=
×
-(-
)×
=
……………………6分
⑵ 由
=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,则S△ABC=
AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,则S△ABC=
AB×BC×sinB=
×5×3×
=
……………………11分
综合得△ABC的面积为
或![]()
已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函数
的图象与
轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为
,令
,解得
,可知当极大值为
,极小值为
.由
,解得
,由
,解得
,所以
或
,选A.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com