(3)过点.即当时.上是增函数 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上(线段AB)的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上;点A的坐标为(0,1)(如图3),当点M从A到B是逆时针运动时,图3中直线AM与x轴交于点N(n,0),按此对应法则确定的函数使得m与n对应,即
f(m)=n.

对于这个函数y=f(x),有下列命题:
;  ②f(x)的图象关于对称;  ③若,则;  ④f(x)在(0,1)上单调递增.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上(线段AB)的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上;点A的坐标为(0,1)(如图3),当点M从A到B是逆时针运动时,图3中直线AM与x轴交于点N(n,0),按此对应法则确定的函数使得m与n对应,即
f(m)=n.

对于这个函数y=f(x),有下列命题:
;  ②f(x)的图象关于对称;  ③若,则;  ④f(x)在(0,1)上单调递增.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上(线段AB)的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上;点A的坐标为(0,1)(如图3),当点M从A到B是逆时针运动时,图3中直线AM与x轴交于点N(n,0),按此对应法则确定的函数使得m与n对应,即
f(m)=n.

对于这个函数y=f(x),有下列命题:
数学公式; ②f(x)的图象关于数学公式对称; ③若数学公式,则数学公式; ④f(x)在(0,1)上单调递增.
其中正确的命题个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

(2011•上海模拟)如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上(线段AB)的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上;点A的坐标为(0,1)(如图3),当点M从A到B是逆时针运动时,图3中直线AM与x轴交于点N(n,0),按此对应法则确定的函数使得m与n对应,即
f(m)=n.

对于这个函数y=f(x),有下列命题:
f(
1
4
)=-1
;  ②f(x)的图象关于(
1
2
,0)
对称;  ③若f(x)=
3
,则x=
5
6
;  ④f(x)在(0,1)上单调递增.
其中正确的命题个数是(  )

查看答案和解析>>


同步练习册答案