初中阶段学习的函数⑴一次函数:f.图象为一条直线.在k>0时函数单调增.k<0时函数单调减 查看更多

 

题目列表(包括答案和解析)

精英家教网通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.

查看答案和解析>>

某学习小组在暑期社会实践活动中,通过对某商场一种品牌服装销售情况的调查发现:该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+
k
x
(k
为正常数),日销售量Q(x)(件)与时间x(天)的部分数据如表所示:
x(天) 10 20 25 30
Q(x)(件) 110 120 125 120
已知第10天的日销售收入为121(百元).
(1)求k的值;
(2)给出以下四种函数模型:①Q(x)=ax+b,②Q(x)=a|x-25|+b,③Q(x)=a•bx,④Q(x)=a•logbx.请你根据表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(3)求该服装的日销售收入f(x)(1≤x≤30,x∈N)的最小值.

查看答案和解析>>

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>

某校一次数学研究性学习活动中,一个密封的箱子内装有分别写上y=sinx,y=cosx,y=exy=
1
x
,y=-
1
x2
,lnx六个函数的六张外形完全一致的卡片(一张卡片一个函数),参与者有放回的抽取卡片,参与者只参加一次.如果只抽一张,抽得卡片上的函数是其它某一张卡片上函数的导数,抽取者将获得三等奖;如是先后各抽一张,抽出的卡片中,其中一张上的函数是另一张卡片上函数的导数,抽取者将获得二等奖;如果先后各抽一张,第一张卡片上的函数的导数是第二张卡片上的函数,抽取者将获得一等奖.
(Ⅰ)求学生甲抽一次获得三等奖的概率;
(Ⅱ)求学生乙抽一次获得二等奖的概率;
(Ⅲ)求学生丙抽一次获得一等奖的概率.

查看答案和解析>>

我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:
.(填“是”或“否”)如果是,写出它的一个“和谐数”:
2
2

(2)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,
3
2
是其“和谐数”.
证明过程如下:对任意x1∈[10,100],令
g(x1)+g(x2)
2
=
3
2
,即
lgx1+lgx2
2
=
3
2

x2=
1000
x1
.∵x1∈[10,100],∴x2=
1000
x1
∈[10,100]
.即对任意x1∈[10,100],存在唯一的x2=
1000
x1
∈[10,100]
,使得
g(x)+g(x2)
2
=
3
2
.∴g(x)=lgx为“和谐函数”,
3
2
是其“和谐数”.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”;
(3)写出一个不是“和谐函数”的函数,并作出证明.

查看答案和解析>>


同步练习册答案