(3)函数y=x+.图象:⑷.指数与对数函数①.指数与对数类别指数对数式子ab=NlogaN=b性质 查看更多

 

题目列表(包括答案和解析)

规定[x]表示不超过x的最大整数,例如[2.3]=2,[-2.7]=-3,函数y=[x]的图象与函数y=ax的图象在[0,2010)内有2 010个交点,则a的取值范围是
 

查看答案和解析>>

下列结论中:
(1)定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞]也是增函数,则函数f(x)在R上是增函数;
(2)若f(2)=f(-2),则函数f(x)不是奇函数;
(3)函数y=x-0.5(4)是(0,1)上的减函数;
(4)对应法则和值域相同的函数的定义域也相同;
(5)若x0是函数y=f(x)的零点,且m<x0<n,则f(m) f(n)<0一定成立;
写出上述所有正确结论的序号:
(1)(3)
(1)(3)

查看答案和解析>>

当α∈{
12
,1,3}幂函数y=xα的图象不可能经过的是第
二、四
二、四
象限(符合条件的要全填).

查看答案和解析>>

给出以下命题:
(1)在△ABC中,sinA>sinB是A>B的必要不充分条件;
(2)在△ABC中,若tanA+tanB+tanC>0,则△ABC一定为锐角三角形;
(3)函数y=
x-1
+
1-x
与函数y=sinπx,x∈{1}是同一个函数;
(4)函数y=f(2x-1)的图象可以由函数y=f(2x)的图象按向量
a
=(1,0)
平移得到.
则其中正确命题的序号是
(2)(3)
(2)(3)
(把所有正确的命题序号都填上).

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例,研究推广后的函数的单调性(只须写出结论,不必证明),并求函数f(x)=(x2+)n+(+x)n(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>


同步练习册答案