推导过程为:祖?原理→柱体体积棱锥台体应用过程为:公式法.割补法.等积法[教学难点]割补法[教学重点]公式的推导及总结[教学流程]一.公式推导:通过一摞书演示.说明祖?原理:两个登高的几何体.若在所有高处的截面面积相等.则此两个几何体的体积相等 查看更多

 

题目列表(包括答案和解析)

一种十字绣作品由相同的小正方形构成,图①,②,③,④分别是制作该作品前四步时对应的图案,按照如此规律,第n步完成时对应图案中所包含小正方形的个数记为f(n).

(1)求出f(2),f(3),f(4),f(5)的值;
(2)利用归纳推理,归纳出f(n+1)与f(n)的关系式;
(3)猜想f(n)的表达式,并写出推导过程.

查看答案和解析>>

(理科)给出下面四个推导过程:其中正确的推导为
①④
①④

①∵a,b∈R+,∴
b
a
+
a
b
≥2
b
a
a
b
=2;
②∵x,y∈R+,∴lgx+lgy≥2
lgx•lgy

③∵a∈R,a≠0,∴
4
a
+a≥2
4
a
•a
=4;
④∵x,y∈R,xy<0,∴
x
y
+
y
x
=-[(-
x
y
)+(-
y
x
)]≤-2
(-
x
y
)(-
y
x
)
=-2.

查看答案和解析>>

已知函数f(x)=x3-3x+1(x∈R)
(1)试利用单调性定义推导函数f(x)在给定区间[1,3]上的单调性;
(2)分析(1)的推导过程,说出函数f(x)的一个单调递增区间为
[1,+∞)
[1,+∞)
(不必证明);
(3)分析(1)的推导过程,说出函数f(x)的一个单调递减区间为
(-∞,1]
(-∞,1]
(不必证明).
(第(1)小题参考公式:a3-b3=(a-b)(a2+ab+b2))

查看答案和解析>>

我国齐梁时代的数学家祖暅(公元5-6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.

设:由曲线和直线所围成的平面图形,绕轴旋转一周所得到的旋转体为;由同时满足的点构成的平面图形,绕轴旋转一周所得到的旋转体为.根据祖暅原理等知识,通过考察可以得到的体积为            

 

查看答案和解析>>

我国齐梁时代的数学家祖暅(公元前5-6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.

设:由曲线和直线所围成的平面图形,绕轴旋转一周所得到的旋转体为;由同时满足的点构成的平面图形,绕轴旋转一周所得到的旋转体为.根据祖暅原理等知识,通过考察可以得到的体积为

A.             B.             C.            D.

 

查看答案和解析>>


同步练习册答案