题目列表(包括答案和解析)
学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为
,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为
,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数
的分布列和数学期望。
【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得![]()
第二问中
可能的取值为0,1,2,3
,
,
从而得到分布列和期望值
解:(I)由已知条件得
,即
,则
的值为
。
(Ⅱ)
可能的取值为0,1,2,3
,
,
的分布列为:(1分)
|
|
0 |
1 |
2 |
3 |
|
|
|
|
|
|
所以![]()
已知曲线
的参数方程是
(
是参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
:的极坐标方程是
=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,
).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为
上任意一点,求
的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)设
,令
=
,
则
=
=
,
∵
,∴
的取值范围是[32,52]
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
,
,
为常数,离心率为
的双曲线
:
上的动点
到两焦点的距离之和的最小值为
,抛物线
:![]()
的焦点与双曲线
的一顶点重合。(Ⅰ)求抛物线
的方程;(Ⅱ)过直线
:
(
为负常数)上任意一点
向抛物线
引两条切线,切点分别为
、
,坐标原点
恒在以
为直径的圆内,求实数
的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为
,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程![]()
第二问中,
为
,
,
,
故直线
的方程为
,即
,
所以
,同理可得:![]()
借助于根与系数的关系得到即
,
是方程
的两个不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得双曲线焦距为
,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程![]()
(Ⅱ)设
为
,
,
,
故直线
的方程为
,即
,
所以
,同理可得:
,
即
,
是方程
的两个不同的根,所以![]()
由已知易得
,即![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com