知识与技能: (1)正确理解事件的包含.并事件.交事件.相等事件.以及互斥事件.对立事件的概念,(2)概率的几个基本性质:1)必然事件概率为1.不可能事件概率为0.因此0≤P(A)≤1,2)当事件A与B互斥时.满足加法公式:P,3)若事件A与B为对立事件.则A+B为必然事件.所以P=1.于是有P(3)正确理解和事件与积事件.以及互斥事件与对立事件的区别与联系. 查看更多

 

题目列表(包括答案和解析)

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) 频数(人数) 频率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   计 p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.

查看答案和解析>>

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) 频数(人数) 频率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   计 p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.

查看答案和解析>>

精英家教网心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x天后的存留量y1=
4
x+4
;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y2随时间变化的曲线恰好为直线的一部分,其斜率为
a
(t+4)2
(a<0)
,存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”
(1)若a=-1,t=5,求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.

查看答案和解析>>

已知函数f(x)=x2-2|x|-1的图象,并写出该函数的单调区间与值域.
(1)利用绝对值及分段函数知识,将函数f(x)的解析式写成分段函数;
(2)在给出的坐标系中画出f(x)的图象,并根据图象写出函数f(x)的单调区间和值域.

查看答案和解析>>

(1)利用向量有关知识与方法证明两角差的余弦公式:Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;
(2)由Cα-β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>


同步练习册答案