19.A.B两位同学各有五张卡片.现以投掷均匀硬币的形式进行游戏.当出现正面朝上时A赢得B一张卡片.否则B赢得A一张卡片.规定掷硬币的次数达9次时.或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.(1)求的取值范围,(2)求的数学期望E. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)在我校值周活动中,甲、乙等五名值周生被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名值周生.

(1)求甲、乙两人同时参加A岗位服务的概率;

(2)求甲、乙两人不在同一个岗位服务的概率;

(3)设随机变量X为这五名值周生中参加A岗位服务的人数,求X的分布列及期望.

 

查看答案和解析>>

(本小题满分12分)

为了加快经济的发展,某市选择AB两区作为龙头带动周边地区的发展,决定在AB两区的周边修建城际快速通道,假设AB两区相距个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离.

   (Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程;

   (Ⅱ)若有一条斜率为的笔直公路l与曲线E交于PQ两点,同时在曲线E上建一个加油站M(横坐标为负值)满足,面积的最大值.                                

 

查看答案和解析>>

(本小题满分12分)

        某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,,在A地听到弹射声音的时间比B地晚秒,A地测得该仪器在A、B、C三地位于同一水平面上,至最高点H时的仰角为30°,求该仪器的垂直弹射高度CH(声音的传播速度为340米/秒)

 

查看答案和解析>>

(本小题满分12分)

       在一次体操选拔赛中,教练组设置了难度不同的甲、乙两个系列,每个系列都有AB两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.

假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:

       表1:甲系列            表2:乙系列

动作

A动作

B动作

得分

100

80

40

10

概率

 

 

动作

A动作

B动作

得分

90

50

20

0

概率

 

 
 

 

 

 

 


       现该运动员最后一个出场,之前其他运动员的最高得分为115分.

   (Ⅰ)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;

   (Ⅱ)若该运动员选择乙系列,求其成绩的分布列及其数学期望

 

查看答案和解析>>

(本小题满分12分)
如图:正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.

查看答案和解析>>

一、选择题

1.D  2.A  3.A  4.B  5.B  6.C  7.C  8.C  9.C  10.B  11.D  12.A

二、填空题

13.         14.      15.       16.③④

三、解答题

17.解:(1)将得

(2)不等式即为

①当

②当

③.

18.解:

       

19.解:(1)设正面出现的次数为m,反面出现的次数为n,则,可得:

(2)

20.解法(一)

(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,

  ∴∠DHD1为二面角D1―EC―D的平面角.

设AE=x,则BE=2-x

解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因为E为AB的中点,则E(1,1,0),从而,

,设平面ACD1的法向量为,则

也即,得,从而,所以点E到平面AD1C的距离为

(3)设平面D1EC的法向量,∴

由  令b=1, ∴c=2,a=2-x

依题意

∴(不合,舍去), .

∴AE=时,二面角D1―EC―D的大小为.

21.解:(1)方法一 用数学归纳法证明:

1°当n=1时,

   ∴,命题正确.

2°假设n=k时有

   则

  

∴时命题正确.

由1°、2°知,对一切n∈N时有

方法二:用数学归纳法证明:

       1°当n=1时,∴;

    2°假设n=k时有成立,

       令,在[0,2]上单调递增,所以由假设

有:即

也即当n=k+1时  成立,所以对一切

   (2)下面来求数列的通项:所以

,

又bn=-1,所以

22.解:(1)设切点A、B坐标分别为,

∴切线AP的方程为:

  切线BP的方程为:

解得P点的坐标为:

所以△APB的重心G的坐标为 ,

所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:

   (2)方法1:因为

由于P点在抛物线外,则

同理有

∴∠AFP=∠PFB.

方法2:①当所以P点坐标为,则P点到直线AF的距离为:

所以P点到直线BF的距离为:

所以d1=d2,即得∠AFP=∠PFB.

②当时,直线AF的方程:

直线BF的方程:

所以P点到直线AF的距离为:

,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB.

 

 

 

 

 

 


同步练习册答案