题目列表(包括答案和解析)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
![]()
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+
)
第二问,
当且仅当![]()
(3)令![]()
∴当x
> 4,y′> 0,即函数y=
在(4,+∞)上单调递增,∴函数y=
在[6,+∞]上也单调递增.
∴当x=6时y=
取得最小值,即SAMPN取得最小值27(平方米).
已知曲线
的参数方程是
(
是参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
:的极坐标方程是
=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,
).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为
上任意一点,求
的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)设
,令
=
,
则
=
=
,
∵
,∴
的取值范围是[32,52]
| 1.01 | 1.02 | 1.03 | 1.04 | 1.05 | ||
| 零件尺寸x | 甲 | 3 | 7 | 8 | 9 | 3 |
| 零件个数y | 乙 | 7 | 4 | 4 | 4 | a |
| x |
| x+2 |
| x |
| x+2 |
| x |
| 3x+4 |
| x |
| 7x+8 |
| x |
| 15x+16 |
| x |
| (2n-1)x+2n |
| x |
| (2n-1)x+2n |
| n(n+1) | 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com