(Ⅰ)证明.并且不存在.使得, 查看更多

 

题目列表(包括答案和解析)

已知函数
(Ⅰ)求函数的极值;
(Ⅱ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的伴随切线。特别地,当时,又称的λ-伴随切线。
(ⅰ)求证:曲线的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线 ,并证明你的结论; 若不存在 ,说明理由。

查看答案和解析>>

对函数,若存在,使得(其中AB为常数),则称为“可分解函数”。
(1)试判断是否为“可分解函数”,若是,求出AB的值;若不是,说明理由w*w^w.k&s#5@u.c~o*m;
(2)用反证法证明:不是“可分解函数”;
(3)若是“可分解函数”,则求a的取值范围,并写出AB关于a的相应的表达式。

查看答案和解析>>

已知f(x)=
2x2+a
x
,且f(1)=3,
(1)试求a的值,并证明f(x)在[
2
2
,+∞)上单调递增.
(2)设关于x的方程f(x)=x+b的两根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意的b∈[2,
13
]及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在说明理由.

查看答案和解析>>

已知f(x)=
2x2+a
x
,且f(1)=3,
(1)试求a的值,并证明f(x)在[
2
2
,+∞)上单调递增.
(2)设关于x的方程f(x)=x+b的两根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意的b∈[2,
13
]及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在说明理由.

查看答案和解析>>

(2014•宜宾一模)如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的
12
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

 

一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.

(13)                         (14)

(15)2                                        (16)

三、解答题

(17)本小题主要考查三角函数的基本公式和三角函数的恒等变换等基本知识,以及推理能力和运算能力.满分12分.

      解:由已知.

  

      从而 

.

(18)本小题主要考查线面关系和正方体性质等基本知识,考查空间想象能力和推理论证能力.满分12分.

      解法一:(I)连结BP.

      ∵AB⊥平面BCC1B1,  ∴AP与平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB为直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP为直角,tan∠APB=

      ∴∠APB=

(19)本小题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力.满分12分.

      解:设投资人分别用x万元、y万元投资甲、乙两个项目.

      由题意知

      目标函数z=x+0.5y.

      上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.

      与可行域相交,其中有一条直线经过可行域上的M点,且

      与直线的距离最大,这里M点是直线

      和的交点.

       解方程组 得x=4,y=6

      此时(万元).

          x=4,y=6时z取得最大值.

      答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.

(20)本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.满分12分.

      解:(I)当时,

             

       由

       即              又.

       (II)设数列{an}的公差为d,则在中分别取k=1,2,得

(1)

(2)

       由(1)得

       当

       若成立

       若

          故所得数列不符合题意.

       当

       若

       若.

       综上,共有3个满足条件的无穷等差数列:

       ①{an} : an=0,即0,0,0,…;

       ②{an} : an=1,即1,1,1,…;

       ③{an} : an=2n-1,即1,3,5,…,

(21)本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.满分12分.

       解:(I)设所求椭圆方程是

       由已知,得    所以.

       故所求的椭圆方程是

       (II)设Q(),直线

       当由定比分点坐标公式,得

      

       .

       于是   故直线l的斜率是0,.

(22)本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分.

       证明:(I)任取 

       和  ②

       可知

       从而 .  假设有①式知

      

       ∴不存在

       (II)由                        ③

       可知   ④

       由①式,得   ⑤

       由和②式知,   ⑥

       由⑤、⑥代入④式,得

                          

(III)由③式可知

  (用②式)

       (用①式)