18.四棱锥P-ABCD中.PA面ABCD.PA=AB=BC=2.E为PA中点.过E作平行于底面的面EFGH分别与另外三条侧棱交于只F, G, H,已知底面ABCD为直角梯形.AD∥BC. ABAD.∠BCD=135°. (1)求异面直线AF,BG所成的角的大小, (2)设面APB与面CPD所成的锐二面角的大小为θ.求cosθ. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB

(Ⅰ)求证:平面PAC⊥平面PBD;

(Ⅱ)求二面角B—PC—D的余弦值.

 

 

 

查看答案和解析>>

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

 (本小题满分12分)、四棱锥P—ABCD中,侧面PAD底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,,E、G分别是BC、PE的中点。

(1)求证:ADPE;

   (2)求二面角E—AD—G的正切值。

查看答案和解析>>

(本题满分12分)
如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=,PA=PD=AD=2BC=2,CD,M在棱PC上,N是AD的中点,二面角M-BN-C为.
(1)求的值;
(2)求直线与平面BMN所成角的大小.[来源:学科网ZXXK]

查看答案和解析>>

 

一、选择题:(本大题共12小题每小题5分,共60分)

AADCB  DDBCC  DC

二、填空题:(共4小题,每小题4分,共16分)

13. 14.20  15.32  16.

三、解答题:(共6小题,共74分)

17.解:(1)………………2分

    .………………………………4分

在[0,π]上单调递增区间为.…………………6分

   (2)

    当x=0时,,………………………………………8分

    由题设知…………………………………………10分

解之,得…………………………………………12分

可建立空间直角坐标系A-xyz,由平面几何知

识知:AD=4,D(O,4,O),B(2,0,0)。

C(2,2,0),P(0,0,2),E(0,0,1),

F(1,0,1),G(1,1,1).……………2分

   (1)=(1,0,1),=(一1,1,1),

?=0

∴AF与BG所成的角为……………………………4分

   (2)可证明AD⊥平面APB,平面APB的法向量为n(0,1,0)

设平面CPD的法向量为m=(1, y, z),由

  ∴ m=(1,1,2) ……………………………………………………10分

  ∴ …………………………12分

19.解:填湖面积     填湖及排水设备费   水面经济收益     填湖造地后收益

          x(亩)      ax2(元)               bx                 cx

   (1)收益不小于指出的条件可以表示为

  所以.……………………………………3分

显然a>0,又c>b

时,此时所填面积的最大值为亩……………………………7分

   (2)设该地现在水面m亩.今年填湖造地y亩,

,………………9分

,所以.

因此今年填湖造地面积最多只能占现有水面的………………………………12分

 20.(本小题满分12分)

     解:(1)根据导数的几何意义知f(x)=g′(x)=x2+ax-b

     由已知-2、4是方程x2+ax-b=0的两个实根

     由韦达定理,,………………5分

(2)g(x)在区间[一1,3]上是单调递减函数,所以在[一1,3]区间上恒有

横成立

这只需满足

而a2+b2可视为平面区域内的点到原点距离的平方,其中点(-2,3)距离原点最近.所以当时,a2+b2 有最小值13. ………………………………12分

21.解(1)A(a,0),B(0,b),P(x,y)

,即……………………………2分

,由题意知t>0,

点P的轨迹方程C为:.…………………………4分

(2). T=2 时,C为.………………………………………5分

设M(x1,y1),则N(-x1,-y1),则MN=

设直线MN的方程为

点Q到MN距离为

…………………………………………………………………………7分

∴SΔQMN=.…………………………………8分

∵S2ΔQMN=

∴S2ΔQMN=4?9x1y1

…………………………………………………………11分

当且仅当时,等号成立

∴SΔQMN的最大值为……………………………………………………12分

22.(1)证明:,因为对称轴,所以在[0,1]上为增函数,.……………………………………………………4分

   (2)解:由

两式相减得, ………………7分

当n=1时,b1=S1=1

当nㄒ2时,

  ………………9分

   (3)解:由(1)与(2)得  …………10分

假设存在正整数k时,使得对于任意的正整数n,都有cnck成立,

当n=1,2时,c2-c1= c2> c1

当n=2时,cn+1-cn=(n-2

所以当n<8时,cn+1>cn

当n=8时,cn+1=cn

当n>8时,cn+1<cn,   ……………………13分

所以存在正整数k=9,使得对于任意的正整数n,都有cnck成立。  …………14分