解:(Ⅰ)依题设.f(x)=2cos2x+sin2x=1+2sin(2x+). 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是
5

(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是
5

(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是数学公式
(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

选做题
设函数f(x)=|x-a|+3x,其中a>0。
(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集;
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值。

查看答案和解析>>


同步练习册答案