∴的取值范围是(2.+).方法二: 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

如图,是△的重心,分别是边上的动点,且三点共线.

(1)设,将表示;

(2)设,证明:是定值;

(3)记△与△的面积分别为.求的取值范围.

(提示:

【解析】第一问中利用(1)

第二问中,由(1),得;①

另一方面,∵是△的重心,

不共线,∴由①、②,得

第三问中,

由点的定义知

时,时,.此时,均有

  时,.此时,均有

以下证明:,结合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

不共线,∴由①、②,得 

解之,得,∴(定值).

(3)

由点的定义知

时,时,.此时,均有

  时,.此时,均有

以下证明:.(法一)由(2)知

,∴

,∴

的取值范围

 

查看答案和解析>>

(09年东城区二模理)(14分)

已知函数(其中为常数,).利用函数构造一个数列,方法如下:

对于给定的定义域中的,令,…,,…

在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.

  (Ⅰ)当时,求数列的通项公式;

    (Ⅱ)如果可以用上述方法构造出一个常数列,求的取值范围;

   (Ⅲ)是否存在实数,使得取定义域中的任一实数值作为,都可用上述方法构造出一个无穷数列  ?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案相应获得第二次优惠:
消费金额(元)的范围 [200,400) [400,500) [500,700) [700,900)
第二次优惠金额(元) 30 60 100 150
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为600元的商品,则消费金额为480元,480∈[400,500),所以获得第二次优惠金额为60元,获得的优惠总额为:600×0.2+60=180(元).
设购买商品的优惠率=
购买商品获得的优惠总额
商品的标价

试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)设顾客购买标价为x元(x∈[250,1000]) 的商品获得的优惠总额为y元,试建立y关于x的函数关系式;
(3)对于标价在[625,800)(元)内的商品,顾客购买商品的标价的取值范围为多少时,可得到不小于
1
3
的优惠率?(取值范围用区间表示)

查看答案和解析>>


同步练习册答案