于是 因此当n=k+1时.不等式也成立. 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

假设当n=k(kN*kn0)时命题成立,并证明当n=k+1时,命题________.于是命题对一切nN*nn0,都成立.这种证明方法叫做_________.?

运用数学归纳法证明命题要分两步走.第一步是递推的_________;第二步是递推的________,这两步是缺一不可的.

查看答案和解析>>

6、用数学归纳法证明34n+2+52n+1(n∈N)能被14整除时,当n=k+1时,对于34(k+1)+2+52(k+1)+1应变形为
34(34k+2+52k+1)-56•52k+1

查看答案和解析>>

4、用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到(  )

查看答案和解析>>

(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,xn
a
-1

④对某个正整数k,若xk+1≥xk,则xk=[
a
]

其中的真命题有
①③④
①③④
.(写出所有真命题的编号)

查看答案和解析>>


同步练习册答案