题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
.定义域为R的函数
满足
,且当
时,
,则当
时,
的最小值为( )
(A)
(B)
(C)
(D)![]()
.过点
作圆
的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题:
1―5:ACCCB 6―10:CDACD 11―12:BC
二、填空题:
13.2 14.
15.5
16.①
②球的体积函数的导数等于球的表面积函数
三、解答题:
17.(本小题满分12分)
解:(I)
……………………2分
……………………4分
……………………………………………………………………5分
(II)
、B均为锐角且B<A
又C为钝角
∴最短边为b……………………………………………………7分
由
,解得
………………………………9分
又
…………………………12分
18.(本小题满分12分)
解:(I)

………………………………3分
故
…………………………………………………4分
(II)令
.
若
时,当
时,函数
…………………………………………………………6分
若
时,当
时,函数
…………………………………………………………8分
(III)由
确定
单调递增的正值区间是
;
由
确定
单调递减的正值区间是
;………10分
综上,当
时,函数
的单调递增区间为
.
当
时,函数
的单调递增区间为
.……12分
注:①
的这些
等价形式中,以
最好用. 因为复合函数
的中间变量
是增函数,对求
的单调区间来说,
只看外层函数
的单调性即可.否则,利用
的其它形
式,例如
求单调区间是非常容易出错的. 同学们可以尝试做一
下
的其它形式,认真体会,比较优劣!
②今后遇到求类似
的单调区间问题,应首先通过诱导公式将
转化为标准形
式:
(其中A>0,ω>0),然后再行求
解,保险系数就大了.
19.(本小题满分12分)
解:(I)由已知
……………………1分
…………3分
由已知
∴公差d=1…………………………………………………………4分

……………………………………………………6分
(II)设
…………………………7分
当
时,
是k的增函数,
也是k的增函数.
………………………………10分
又
不存在
,使
…………………………………12分
20.(本小题满分12分)
解:
恒成立
只需
小于
的最小值…………………………………………2分
而当
时,
≥3……………………………………………4分
……………………………………………………6分
存在极大值与极小值
有两个不等的实根…………………………8分

或
…………………………………………………………10分
要使“P且
Q”为真,只需
故m的取值范围为[2,6].…………………………………………………12分
21.(本小题满分12分)
解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元………1分
依题意可得约束条件:
|