解得=2 3分 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,

这时函数g(x)只有两个零点,所以(1)不对

(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点

(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现在从该盒中随机取出一球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数Y的分布列.

查看答案和解析>>

分组 频数 频率
(3.9,4.2] 4 0.08
(4.2,4.5] 5 0.10
(4.5,4.8] 25 m
(4.8,5.1] x y
(5.1,5.4] 6 0.12
合计 n 1.00
为了解我市高三学生的视力状况,绵阳市某医疗卫生机构于2011年9月对某校高三学生进行了一次随机抽样调查.已知该校高三的男女生人数的比例为4:1,调查时根据性别采用分层抽样的方式随机抽取了一部分学生作为样本.现将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…(5.1,5.4].经过数据处理,得到如频率分布表:
(1)求频率分布表中未知量x,y,m,n的值;
(2)从样本中视力在(4.2,4.5]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率;
(3)若该校某位高三女生被抽进本次调查的样本的概率为
1
13
,请你根据本次抽样调查的结果估计该校高三学生中视力高于4.8的人数.

查看答案和解析>>

分组频数频率
(3.9,4.2]40.08
(4.2,4.5]50.10
(4.5,4.8]25m
(4.8,5.1]xy
(5.1,5.4]60.12
合计n1.00
为了解我市高三学生的视力状况,绵阳市某医疗卫生机构于2011年9月对某校高三学生进行了一次随机抽样调查.已知该校高三的男女生人数的比例为4:1,调查时根据性别采用分层抽样的方式随机抽取了一部分学生作为样本.现将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…(5.1,5.4].经过数据处理,得到如频率分布表:
(1)求频率分布表中未知量x,y,m,n的值;
(2)从样本中视力在(4.2,4.5]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率;
(3)若该校某位高三女生被抽进本次调查的样本的概率为,请你根据本次抽样调查的结果估计该校高三学生中视力高于4.8的人数.

查看答案和解析>>

解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第nan与第n-1项an-1(n≥2)的差为:anan-1n,∴a2a1=2,a3a2=3,a4a3=4,…,anan-1n,各式相加得,

ana1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an,∴an2(n+1)2.

答案 n2(n+1)2

查看答案和解析>>


同步练习册答案