下面的茎叶图是某班在一次测验时的成绩.伪代码用来同时统计女生.男生及全班成绩的平均分.试回答下列问题:(1) 在伪代码中.“k=0 的含义是什么?横线①处应填什么?(2) 执行伪代码.输出S.T.A的值分别是多少?(3) 请分析该班男.女生的学习情况. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)下面的茎叶图是某班在一次测验时的成绩,程序用同时统计女生、男生及全班成绩的平均分,试回答下列问题:
(1) 在程序中,“=0”的含义是什么?
横线①处应填什么?
(2) 执行程序,输出S,T,A的值分别是多少?
(3) 请分析该班男女生的习情况.

查看答案和解析>>

下面的茎叶图是某班在一次测验时的成绩,程序用来同时统计女生、男生及全班成绩的平均分,试回答下列问题:

(1) 在程序中,“k=0”的含义是什么?

横线①处应填什么?

(2) 执行程序,输出S,T,A的值分别是多少?

(3) 请分析该班男女生的学习情况.

 

查看答案和解析>>

(本小题满分12分)椭圆的中心为坐标原点,焦点在轴上,焦点到相应准线的距离以及离心率均为,直线轴交于点,与椭圆交于相异两点,且.(1)求椭圆方程;(2)若,求的取值范围.

查看答案和解析>>

.(本小题满分12分)

函数的图像如图所示。

(1)若函数处的切线方程为求函数的解析式

(2)在(1)的条件下,是否存在实数,使得的图像与

的图像有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。

 

 

查看答案和解析>>

(本小题满分12分)三角形的三个顶点是A(4,0)、B(6,7)、C(0,3).

(1)求BC边上的高所在直线的方程;       

(2)求BC边上的中线所在直线的方程;

 

查看答案和解析>>

必做部分

1.  2.  3.   4.2.6   5.   6.640+80π    7.    8.①④   9. 10.

11.“,使得”  12.  13.6  14.9

(12.图13.作,故,)

15.(1)取AB的中点G,则易证得A1GD1F

又正方形A1ABB1中,EG分别是相应边的中点,

A1GAE,∴D1FAE

(2)由正方体可知:A1 D1⊥面A1ABB1,∴A1D1AE

又由(1)已证:D1FAE

A1D1D1F= D1,∴AE⊥平面A1FD1

平面AED,∴平面AED⊥平面A1FD1

 

16.(1)全班32名学生中,有15名女生,17名男生.在伪代码中,根据“S←S/15,T←T/17”可以推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.

(2)女生、男生及全班成绩的平均分分别为S=78,T=76.88,A≈77.4.

(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.88.从中可以看出女生成绩比较集中,整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多,相比较男生两极分化比较严重.

 

17.(1)

.由题意可知

解得.

(2)由(Ⅰ)可知的最大值为1,.

. 而.

由余弦定理知,联立解得 .

18.(1)设A、B两点的坐标分别为, 根据韦达定理,得

 ∴线段AB的中点坐标为().

 由已知得

 故椭圆的离心率为.

(2)由(1)知从而椭圆的右焦点坐标为关于直线的对称点为解得.由已知得 ,故所求的椭圆方程为.

 

19.(1)方法一:.由题设,得,  ①

.    ②

,∴,∴.

由①代入②得,∴

.   ③

代入中,得.  ④

由③、④得

方法二:∵,∴,∴.

同上可得将(1)变为代入(2)可得 ,所以,则.

方法三:同上可得将(1)变为代入(2)可得,显然,所以.

因为图象的开口向下,且有一根为x1=1,

由韦达定理得,.

,所以,即,则

,所以 .

 (2)由(1)知,的判别式Δ=

∴方程有两个不等的实根

,∴

∴当时,;当时,.

∴函数的单调增区间是.

.

∵函数在区间上单调递增,∴

,即的取值范围是.

(3)由,即,∵

,∴,∴.(自注:视为的一次函数)

由题意,得,∴.

∴存在实数满足条件,即的最小值为.

 

20.(1)由于,则

,∴.

(2)由于,由(1),则

,则,∴

    又,

   ∴.

,

.

,且,故, ∴,因此.

从而

 

 

 

选做部分

1. (1)设事件表示“甲选做14题”,事件表示“乙选做14题”,则甲、乙2名学生选做同一道题的事件为“”,且事件相互独立.

=.

(2)随机变量的可能取值为0,1,2,3,4.且.

.

所以变量的分布列为:

0

1

2

3

4

 

 

 

. (或)

 

2.以A为原点,分别为x轴,y轴,z轴的正向建立空间直角坐标系A-xyz,则有

D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2).

于是 ,

(1)设EC1FD1所成角为b,则

(2)设向量与平面C1DE垂直,则有

其中z>0.

n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量.

∵向量=(0,0,2)与平面CDE垂直,

n0所成的角θ为二面角C-DE-C1的平面角.

,∴

 

3.(1)设M=,则=8=,故

    =,故

联立以上两方程组解得a=6,b=2,c=4,d=4,故M=

(2)由(1)知,矩阵M的特征多项式为,故其另一个特征值为.设矩阵M的另一个特征向量是e2,则M e2=,解得.

(3)设点是直线上的任一点,其在矩阵M的变换下对应的点的坐标为,则

=,即

代入直线的方程后并化简得,即.

 

4.(1)抛物线焦点为(1,0).

消去x得

,

,

=.

(2)设消去x,得.

,则y1+y2=4t ,y1y2=-4b.

=.

,∴直线l过定点(2,0).

 

 


同步练习册答案