米.并在 查看更多

 

题目列表(包括答案和解析)

在静水中划船的速度是40米/分钟,水流的速度是20米/分钟,如果船从岸边A处出发,沿着与水流垂直的航线到达对岸,那么船的前进方向应指向河流的上游并与河岸垂直方向所成的角为
60°
60°

查看答案和解析>>

在济青高速公路潍坊测速站,按同样的方式每隔2分钟测一辆汽车的行驶速度(千米/时)并记录车牌号,共测了n辆汽车,测得的速度统一分组后画出了如下频率分布直方图(如图),其中速度在[85,115)内的频数为46.

(1)求n的值;

(2)求速度在[90,95)内的汽车的数量;

(3)左起第四组和第六组分别有10辆和3辆汽车挂有潍坊牌照,问这两组中哪组挂有潍坊牌照的汽车通过该测速站的频率较高?

查看答案和解析>>

如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

查看答案和解析>>

如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

 

 

查看答案和解析>>

如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

 

 

查看答案和解析>>

一、选择题(8小题,每题5分,共40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

B

B

B

A

C

D

B

A

D

二、填空题(6小题,每题5分,共30分)

            

11. 5 ;    12.       13.15 ; 15         14。2;   15.

三、解答题(6小题,共80分)

16.解:(1)

 

----------------5分

 

    因为最小正周期为,∴        ,∴;----------6分

 

(2)由(1)知                   ,

 

因为,∴-------------------8分

因为             ,∴                   

 

所以----------------10分

     所以         或       .------------------12分

 

17.解:(1)已知函数,       ------2   

又函数图象在点处的切线与直线平行,且函数处取得极值,,且,解得

,且   --------------5分     

,        

所以函数的单调递减区间为  -----------------8分           

(2)当时,,又函数上是减函数

上恒成立,   --------------10分 

上恒成立。----------------12分

 

18.解:(1)

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

16

0.32

90.5~100.5

12

0.24

合计

50

1.00

 

 

 

---------------------4分

(2) 频数直方图如右上所示--------------------------------8分

(3) 成绩在75.5~80.5分的学生占70.5~80.5分的学生的,因为成绩在70.5~80.5分的学生频率为0.2 ,所以成绩在76.5~80.5分的学生频率为0.1 ,---------10分

成绩在80.5~85.5分的学生占80.5~90.5分的学生的,因为成绩在80.5~90.5分的学生频率为0.32 ,所以成绩在80.5~85.5分的学生频率为0.16  -------------12分

所以成绩在76.5~85.5分的学生频率为0.26,

由于有900名学生参加了这次竞赛,

所以该校获得二等奖的学生约为0.26´900=234(人)    -------------14分

19.解(Ⅰ)证明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD=A

∴MN⊥平面PAD  ………………3分

MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

∴∠BPC为直线PC与平面PBA所成的角  即…………7分

在Rt△PBC中,PC=BC/sin∠BPC=


  ………………10分

(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

∴∠PMQ即为二面角P―MN―Q的平面角  …………12分

      ∴   …………14分

20.(14分)

解(1),动圆的半径为r,则|PQ1|=r+3,

|PQ2|= r+1,|PQ1|-|PQ2|=2,…………………3分

P的轨迹是以O1O2为焦点的双曲线右支,a=1,c=2,

方程为………………………………………………6分

   (2)设Px1,y1),Qx2,y2),当k不存在时,不合题意.

       直线PQ的方程为y=kx-3),

       ………………8分

       由

      

       …………………………………………………………10分

       …………14分

 

 

 

 

 

 

21.  (1)设----------------3

,又

---------------------------------5

(2)由已知得

两式相减得,-------------------------7

.若

-------------------------------9

(3) 由,

.-----------------------------------11分

------------------------------13

可知,-------------------------------14. 分

 

 


同步练习册答案