由于以下分两种情况讨论. 查看更多

 

题目列表(包括答案和解析)

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>

一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:

当船逆流行驶,与水流成钝角时;

当船顺流行驶,与水流成锐角时;

当船垂直于对岸行驶,与水流成直角时.

请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短

查看答案和解析>>

一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸,已知船的速度|v1|=10 km/h, 水流速度|v2|=2 km/h,要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小,分三种情况讨论:

(1)当船逆流行驶,与水流成钝角时;

(2)当船顺流行驶,与水流成锐角时;

(3)当船垂直于对岸行驶,与水流成直角时.

计算以上三种情况,是否当船垂直于对岸行驶,与水流成直角时,所用时间最短.

查看答案和解析>>

一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:

当船逆流行驶,与水流成钝角时;

当船顺流行驶,与水流成锐角时;

当船垂直于对岸行驶,与水流成直角时.

请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短

查看答案和解析>>

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>


同步练习册答案