(3)求证:曲线上不存在两个不同的点.使过两点的切线都垂直于直线. 查看更多

 

题目列表(包括答案和解析)

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:的一个焦点是F2(2,0),且
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:的一个焦点是F2(2,0),且
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>


(本小题满分14分)
已知函数,当时,取得极小值.
(1)求的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.

查看答案和解析>>


同步练习册答案