题目列表(包括答案和解析)
最小正周期为π的函数
(其中a是小于零的常数,
是大于零的常数)的图象按向量
,(0<θ<π)平移后得到函数y=f(x)的图象,而函数y=f(x)在实数集上的值域为[-2,2],且在区间
上是单调递减函数.
(1)求a、
和θ的值;
(2)若角α和β的终边不共线,f(α)+g(α)=f(β)+g(β),求tan(α+β)的值.
函数
的最小正周期为
,将
的图像向左平移
个单位长度所得图像关于
轴对称,则
的一个值是( )
(A)
(B)
(C)
(D)![]()
(本小题满分12分)
如下图,O1(– 2,0),O2(2,0),圆O1与圆O2的半径都是1,
![]()
(1) 过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得
.求动点P的轨迹方程;
(2) 若直线
交圆O2于A、B,又点C(3,1),当m取何值时,△ABC的面积最大?
(本小题满分15分)
如图,在半径为
的
圆形(
为圆心)铝皮上截取一块矩形材料
,其中点
在圆上,点
、
在两半径上,现将此矩形铝皮
卷成一个以
为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱的体积为![]()
.
![]()
(1)写出体积
关于
的函数关系式,并指出定义域;
(2)当
为何值时,才能使做出的圆柱形罐子体积
最大?最大体积是多少?
(本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).
![]()
(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com