(Ⅱ)由.得.即 查看更多

 

题目列表(包括答案和解析)

(2013•日照二模)如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是(  )

查看答案和解析>>

(2012•上饶一模)围棋对局中,执黑棋者先下,执白棋者后下.一次围棋比赛中,甲乙进入最后的冠军争夺战,决赛规则是三局两胜制(即三局比赛中,谁先赢得两局,就获得冠军),假定每局比赛没有平局,且每局比赛由裁判扔硬币决定谁执黑棋.根据甲乙双方以往对局记录,甲执黑棋对乙的胜率为
7
10
,甲执白棋对乙的胜率为
1
2

(1)求乙在一局比赛中获胜的概率;
(2)若冠军获得奖金10万元,亚军获得奖金5万元,且每局比赛胜方获得奖金1万元,负方获得奖金0.5万元,记甲在决赛中获得奖金数为X万元.求X的分布列和期望EX.

查看答案和解析>>

(本题满分12分)已知函数

(1)判断f(x)的奇偶性,并说明理由;

(2)若方程有解,求m的取值范围;

【解析】第一问利用函数的奇偶性的定义可以判定定义域和f(x)与f(-x)的关系从而得到结论。

第二问中,利用方程有解,说明了参数m落在函数y=f(x)的值域里面即可。

 

查看答案和解析>>

解:(Ⅰ)设,其半焦距为.则

   由条件知,得

   的右准线方程为,即

   的准线方程为

   由条件知, 所以,故

   从而,  

(Ⅱ)由题设知,设

   由,得,所以

   而,由条件,得

   由(Ⅰ)得.从而,,即

   由,得.所以

   故

查看答案和解析>>

 

,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。

 

 

查看答案和解析>>


同步练习册答案