综上可得.(.). ---14分 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x(x ≥ 10)层,则每平方米的平均建筑费用为560 + 48x(单位:元).⑴写出楼房平均综合费用y关于建造层数x的函数关系式;

⑵该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = )

查看答案和解析>>

(本题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为xx ≥ 10)层,则每平方米的平均建筑费用为560 + 48x(单位:元).⑴写出楼房平均综合费用y关于建造层数x的函数关系式;⑵该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = )

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>


同步练习册答案