(I)解:的两个实根. 查看更多

 

题目列表(包括答案和解析)

已知定义在R上的函数f(x)=数学公式(sinωx+acosωx)(a∈R,0<ω≤1)满足:f(x)=f(数学公式-x),f(x-π)=f(x+π).
(I)求f(x)的解析式;
(II)若m2-4n>0,m,n∈R,求证:“|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-数学公式数学公式)内有两个不等的实根”的充分不必要条件.

查看答案和解析>>

已知定义在R上的函数f(x)=
1
2
(sinωx+acosωx)(a∈R,0<ω≤1)满足:f(x)=f(
π
3
-x),f(x-π)=f(x+π).
(I)求f(x)的解析式;
(II)若m2-4n>0,m,n∈R,求证:“|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-
6
π
6
)内有两个不等的实根”的充分不必要条件.

查看答案和解析>>

已知定义在R上的函数f(x)=
1
2
(sinωx+acosωx)(a∈R,0<ω≤1)满足:f(x)=f(
π
3
-x),f(x-π)=f(x+π).
(I)求f(x)的解析式;
(II)若m2-4n>0,m,n∈R,求证:“|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-
6
π
6
)内有两个不等的实根”的充分不必要条件.

查看答案和解析>>

已知函数f(x)=+ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n,使得?说明理由.

查看答案和解析>>

已知函数f(x)=+ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n,使得?说明理由.

查看答案和解析>>


同步练习册答案