解:(1)由题意得 ----1分 查看更多

 

题目列表(包括答案和解析)

.(本题满分13分)设函数,方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求证:数列{)是等差数列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。

 

 

 

查看答案和解析>>

(1)椭圆C:(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2-a2
(2)由(1)类比可得如下真命题:双曲线C:(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值,请写出这个定值(不要求给出解题过程)。

查看答案和解析>>

(1)椭圆Ca>b>0)与x轴交于AB两点,点P是椭圆C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值

(2)由(1)类比可得如下真命题:双曲线Ca>0,b>0)与x轴交于AB两点,点P是双曲线C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>

(1)椭圆Ca>b>0)与x轴交于AB两点,点P是椭圆C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值

(2)由(1)类比可得如下真命题:双曲线Ca>0,b>0)与x轴交于AB两点,点P是双曲线C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>

(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2-a2
(2)由(1)类比可得如下真命题:双曲线C:+=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>


同步练习册答案