题目列表(包括答案和解析)
(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列
的前
项和为
,且
,![]()
(1)证明:
是等比数列;
(2)求数列
的通项公式,并求出n为何值时,
取得最小值,并说明理由。
(2)
=
n=15取得最小值
(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列
的前
项和为
,且
,![]()
(1)证明:
是等比数列;
(2)求数列
的通项公式,并求出n为何值时,
取得最小值,并说明理由。
(2)
=
n=15取得最小值
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为
,公差为
的无穷等差数列
的子数列问题,为此,他取了其中第一项
,第三项
和第五项
.
(1) 若
成等比数列,求
的值;
(2) 在
,
的无穷等差数列
中,是否存在无穷子数列
,使得数列
为等比数列?若存在,请给出数列
的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数
,公比为正整数
(
)的无穷等比数 列
,总可以找到一个子数列
,使得
构成等差数列”. 于是,他在数列
中任取三项
,由
与
的大小关系去判断该命题是否正确. 他将得到什么结论?
(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若
,求
的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式
成立;
(3)是否存在常数k和等差数列{an},使
恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
(本题满分13分)
对于给定数列
,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “M类数列”.
(1)若
,
,
,数列
、
是否为“M类数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列
是“M类数列”,则数列
也是“M类数列”;
(3)若数列
满足
,
,
为常数.求数列
前
项的和.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com