解:(1)三棱柱ABC―A1B1C1为直三棱柱 查看更多

 

题目列表(包括答案和解析)

在直三棱柱ABC-A1B1C1中,AB=AC=2,AB⊥AC,D为BB1的中点.二面角B-A1C1-D的大小为α,试建立适当的空间直角坐标系,用向量法分别解答以下问题:

(Ⅰ)当AA1=2时,求:

(ⅰ)所成角φ的余弦值

(ⅱ)C1D与平面A1BC1所成角的正弦值

(Ⅱ)当棱柱的高变化时,求cosα的最小值.

查看答案和解析>>

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.

(Ⅰ)求证:点为棱的中点;

(Ⅱ)判断四棱锥的体积是否相等,并证明。

【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,

易知。由此知:从而有又点的中点,所以,所以点为棱的中点.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。

(1)过点点,取的中点,连且相交于,面内的直线。……3分

且相交于,且为等腰三角形,易知。由此知:,从而有共面,又易知,故有从而有又点的中点,所以,所以点为棱的中点.               …6分

(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.

(Ⅰ)求证:CN∥平面AMB1

(Ⅱ)求证: B1M⊥平面AMG.

【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明

第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。

解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四边形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奂  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

设:AC=2a,则

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

 

 
    (理)如图,在正三棱柱(底面为正三角形,侧棱与底面垂直)ABCA1B1C1中,MN

分别为A1B1BC的中点.

   (I)试求的值,使

   (II)设AC1的中点为P,在(I)的条件下,求证:NP⊥平面AC1M.

 

 

 

(文)已知函数的极大值

为7;当x=3时,fx)有极小值.

(I)求函数fx)的解析式;

(II)求函数fx)在点P(1,f(1))处的切线方程.

 

 

 

 

 

 

查看答案和解析>>

解答须写出文字说明、证明过程和演算步骤.

下图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3

(Ⅰ)设点O是AB的中点,证明:OC∥平面A1B1C1

(Ⅱ)求AB与平面AA1CC1所成角的正弦值.

查看答案和解析>>


同步练习册答案